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ARTICLEINFO ABSTRACT
’é’e ’égi eljisl’é’gécember 2025 This study presents a quantitative evaluation of lower limb joint motion using inertial
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segments of thirty-two healthy participants to capture knee and ankle kinematics during one
gait cycle. A Butterworth filter was selected as the optimal preprocessing method to reduce
noise and enhance signal clarity. The joint angles obtained from IMUs were compared with

Keywords: those from the Kinovea motion analysis system, with synchronization performed on a single
Gait analysis, . gait cycle for each subject. Agreement between both systems was examined using the
Inertial measurement unit (IMU), N i . . . X .
Intraclass correlation coefficient (ICC), intraclass correlation coefficient (ICC), yielding values of 0.822 (right knee), 0.881 (right
Amputee

ankle), 0.797 (left knee), and 0.773 (left ankle), indicating moderate to excellent consistency.
A case study involving an amputee further highlighted reduced motion range and gait
asymmetry in the prosthetic limb, particularly during the swing phase. These findings suggest
that IMUs provide a practical and cost-effective alternative for gait assessment in non-
laboratory environments.

INTRODUCTION In recent years, inertial measurement units (IMUs) have

emerged as a promising alternative for motion analysis. IMUs

Gait analysis is a fundamental tool in biomechanics and clinical  are portable, cost-effective, and capable of capturing kinematic

assessment, providing essential information about human  data in real-world conditions. Despite these advantages, IMU-

locomotion, rehabilitation progress, and prosthetic evaluation.  pased measurements face several challenges, including signal

Traditional motion capture systems and video-based analysis  nojse, sensor drift, and the need for appropriate filtering

software, such as VICON system, are widely recognized for  techniques to ensure accuracy. Previous research has explored

their accuracy; however, their high cost, reliance on laboratory MU applications in joint angle estimation, yet questions remain
environments, and complex setup limit their practical use in  regarding their reliability compared to conventional systems.

everyday applications.

The objective of this study is to evaluate the accuracy and

reliability of IMU-based joint angle estimation during gait

* Aizreena Azaman (aizreena@utm.my) analysis. Specifically, knee and ankle joint angles obtained from

) o ) , IMU sensors are compared with those derived from the Kinovea

ffﬁ;ﬁ E;‘,’;“‘;‘;‘;ﬁ"‘?? echnology Centre, Universiti Teknologi Malaysia (UTM), motion analysis system in healthy participants. Preprocessing of

N ysia
IMU signals was optimized using filtering techniques, and the
degree of agreement between the two systems was statistically
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assessed through the intraclass correlation coefficient (ICC).
Additionally, a case study involving an amputee subject was
conducted to highlight differences in joint kinematics and gait
asymmetry. The findings of this research highlight the potential
of IMUs as a practical and affordable tool for gait assessment,
particularly in non-laboratory and clinical settings, offering a
valuable alternative to traditional motion capture systems.

Recent studies have investigated the use of inertial measurement
units (IMUs) for gait analysis as an alternative to conventional
motion capture systems. IMU-based approaches provide
advantages in portability, affordability, and ease of use, enabling
applications outside laboratory environments (Tao et al., 2020;
Clermont et al., 2020). However, challenges remain, including
signal drift, calibration issues, and the need for filtering
techniques such as Butterworth and Kalman filters to reduce
noise and improve accuracy (Salarian et al., 202; Abbas et al.,
2021).

Several works have validated IMU systems against gold-
standard optical motion capture or video-based tools, reporting
moderate-to-excellent agreement in kinematic measurements
such as joint angles, stride length, and step timing (Esposito et
al., 2019; Tedesco et al., 2021). Nonetheless, limitations persist,
particularly regarding stride length estimation, sensor
misalignment, and the scarcity of studies involving clinical
populations such as amputees (Wang et al.,2022). These gaps
emphasize the need for research that evaluates IMU-based gait
analysis in both healthy and impaired individuals, while
comparing performance with widely available reference tools
such as Kinovea.

Start

Participant recruitment (n=32)

Data Collection
IMU sensors and video recording (Kinovea)
* Joint angle extraction

Data Analysis
Statistical Analysis (ICC)
* Comparison Healthy vs. Amputee

Results & Discussion

End

Fig. 1 Workflow of the research

MATERIALS AND METHOD

This section describes the design of the research methodology
developed to achieve the study objectives. Inertial measurement
units (IMUs) were employed to capture gait data from healthy
participants, with a case study conducted on a lower-limb
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amputee. For validation, IMU-derived joint kinematics were
compared with measurements obtained from the Kinovea
motion analysis system in healthy individuals. The methodology
is structured to present the framework for data collection,
preprocessing, analysis, and evaluation procedures used to
determine the accuracy and effectiveness of the proposed
approach.

Participants

Participants in this study were divided into two groups: healthy
individuals (Table I) and individuals with lower-limb
amputations (Table II). A total of thirty-two healthy participants
were recruited, while one case study involved a unilateral lower-
limb amputee.

Table | Demographic information of healthy participants (N=32)

Variable Mean = SD Range
Age (years) 243+6.2 15-46
Height (cm) 168.4+£9.8 155-197

Body Mass (kg) 71.2+18.8 46-140
19 Female
Gender 11 Male —

Table Il Case study demographic information

Participant Gender Age Height Body
(years) (cm) Mass (kg)

Healthy Male 55 163 80

Transfemoral

Amputee Male 53 160 86

Materials and Instruments

In this study, Delsys inertial measurement units (IMUs) were
employed to capture gait parameters. A total of six IMU sensors
were strategically positioned on the lower limbs to ensure
comprehensive and precise data acquisition. In addition, the
Kinovea software was utilized in conjunction with a laptop and
a high-resolution video camera to record motion data. The
integration of IMU sensors with an optical motion tracking
system enabled cross-validation of gait measurements, thereby
enhancing the robustness and reliability of the overall movement
analysis.

IMU Sensor Placement

To capture lower-limb kinematics, six (6) inertial measurement
unit (IMU) sensors were attached to standardized anatomical
landmarks. Sensors were positioned at the mid-thigh, mid-
shank, and dorsum of the foot on both the left and right limbs.
This placement ensured accurate tracking of knee and ankle joint
motion while minimizing measurement artifacts. The detailed
placement of each sensor is summarized in Table III.
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Table Ill Placement of the sensor

Sensor ID Placement Region Body Side
S1 Middle of Anterior Front (Left Limb)
Thigh
S2 Middle of Anterior Front (Left Limb)
Shank
S3 Middle of Anterior Front (Left Limb)
Foot
S4 Middle of Anterior Front (Right Limb)
Thigh
S5 Middle of Anterior Front (Right Limb)
Shank
S6 Middle of Anterior Front (Right Limb)
Foot

Data Collection Protocol

Six sensors were used to collect IMU data. Each lower extremity
(right and left) had three sensors: one on the thigh, one on the
shank, and one on the foot. Measurements were performed at a
sampling rate of 100 Hz. The raw IMU files (before cleaning)
contained signals irrelevant to the study, such as EMG data and
inconsistent column labeling, meaning column names were
unclear or unrelated. To address this issue, Microsoft Excel was
used to manually clean the data. After manual cleaning, Python
code was used to systematically process the data and extract the
desired signals (such as motion angles, acceleration, or rotation).

Videos were recorded using an iPhone 16 Pro camera. The
footage was filmed from the side, showing clear joint
movement. The software used for video analysis was Kinovea
(version 0.9.5). Four joint angles were manually measured from
the video: the right knee (RK), the left knee (LK), the right ankle
(RA), and the left ankle (LA). These measurements were made
by placing markers on anatomical landmarks on the body, i.e.,
specific locations on the joints used as reference for drawing the
angles. Only one gait cycle was selected for each participant for
each joint angle as shown Fig.2

The geometric relationships between the lower extremity
segments (such as the thigh, leg, and foot) were used to calculate
joint angles, based on data collected from the IMUs. To
calculate the ankle angle, the orientation of the sensor on the foot
was combined with the sensor on the shin (the part between the
knee and ankle). To calculate the knee angle, the orientation of
the sensor on the thigh was combined with the sensor on the
shin. Curves were obtained that demonstrate how the knee and
ankle angles change over time during a gait stride.

Several signal processing techniques were used on both the IMU
data and the Kinovea software. The goal was to remove noise
from the signals and obtain curves that realistically and logically
represent motion (i.e., reflect the actual shape of the joints'
motion). Filtering techniques included the Butterworth low-pass
filter, the median filter, the Savitzky-Golay filter, and the
moving average filter. All of these techniques helped reduce
signal drift and high-frequency noise. Importantly, they did not
alter the shape of the original motion curves, preserving the joint
motion shape virtually unchanged. Ultimately, however, the
Butterworth filter was chosen for the final analysis because it
has a high ability to preserve the signal fidelity and realistically
capture the biomechanical properties of the movement.
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Synchronization is the next step after data filtering. This is
because the IMU and Kinovea data were recorded at different
sampling rates and on different timescales (i.e., they did not start
at the same time). To synchronize, a distinct event in the gait
cycle was manually identified in both data types. This event
served as a reference point to standardize the timing of the two
signals, such as heel strike or toe-off.

The acceleration values obtained from the IMU sensors mounted
on the thigh and shank, the relative joint angles (¢) as shown in
Fig. 2 were computed using the following equations;

(ax;/az;) atan2 = a (3.1)
(axr/az;) atan? = f§ (3.2)
(o + p)-180= ¢ (3.3)

Here, axlax1 and azlazl represent the acceleration components
along the x- and z-axes of the thigh sensor, while ax2ax2and
az2az2 represent the acceleration components along the x- and
z-axes of the shank sensor. These values were then used to
calculate the relative knee joint angle during gait.

Signal processing was applied to enhance the quality of the
recorded signals and to ensure accurate representation of joint
motion. Several filtering methods were evaluated, such as the
median filter, Savitzky—Golay filter, and moving average filter,
all of which contributed to noise reduction and drift
minimization. However, the Butterworth low-pass filter was
ultimately selected, as it preserved the physiological
characteristics of the gait cycle while effectively eliminating
high-frequency noise.

The purpose of using the Intraclass Correlation Coefficient
(ICC) as a statistical test is to measure the agreement between
the results of the IMU and Kinovea systems. Therefore, the ICC
value was calculated for each side of the body separately: the
joint angles on the left side and the joint angles on the right side.
When comparing the IMU results with the Kinovea (reference)
data, the ICC results were as follows: 0.877 for the left side,
meaning a good reliability degree, and 0.78 for the right side,
meaning a medium to good reliability. This indicates that the
estimation of joint angles using the IMU is reliable compared to
the reference system.

At the end of this study, a graphical representation (graph) of the
joint angle data was created after processing (e.g., filtering and
smoothing). A separate curve was then drawn for each joint
(e.g., right knee, left ankle, etc.), and each graphic showed a
comparison between the two systems (IMU and Kinovea).
These graphs were also used in a case study comparing a healthy
person and a lower-limb amputee. The goal was to understand
the asymmetries between the two sides and to detect range-of-
motion limitations in the amputee.
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Fig. 2 Measured joint angle and sensor placement.

RESULT AND DISCUSSION

Joint Angle Measurement Using IMUs

IMU data were collected from thirty healthy participants, with
sensors placed on the thigh, shank, and foot of both lower limbs
to capture knee and ankle joint motion. After acquisition, the
raw signals were manually cleaned to retain only the X- and Z-
axis accelerometer values relevant for angle computation. A
Butterworth low-pass filter was then applied to suppress noise
while preserving the biomechanical integrity of the gait signals,
and one complete gait cycle was selected for each participant to
ensure consistency. Joint angles for the right knee, right ankle,
left knee, and left ankle were computed using custom Python
algorithms, revealing inter-subject variations in amplitude and
angular trajectories that reflect natural gait differences. The final
smoothed joint angle curves, corresponding to one gait cycle per
joint, are presented in Fig. IV and serve as the foundation for
subsequent comparison and validation.

IMU vs. Kinovea Joint Angle Comparison

To evaluate the accuracy and agreement of the IMU-based
system with the Kinovea video analysis method, joint angle
measurements were compared using one representative gait
cycle from the same participant. The analysis focused on the
flexion and extension of the knee joints as well as the motion of
the ankle joints. For each joint, IMU-derived and Kinovea-
derived angles were plotted on a time-normalized scale (0—
100% of the gait cycle), with the signals smoothed using a
Butterworth low-pass filter to minimize noise while preserving
motion characteristics. The Intraclass Correlation Coefficient
(ICC (3,1)) was computed to quantify the level of agreement
between the two systems, yielding ICC values of 0.822 (right
knee), 0.881 (right ankle), 0.797 (left knee), and 0.773 (left
ankle). These results indicate moderate to good reliability, with
ankle joints exhibiting slightly higher consistency compared to
knees. Although minor amplitude discrepancies were present—
likely due to differences in measurement modalities and noise
sensitivity—visual inspection of the superimposed curves
confirmed that both systems captured comparable patterns of
joint motion, as illustrated in the comparison plots presented in
Fig. 4.
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Fig. 4 Comparison of a single participant’s IMU and Kinovea
joint angle measurement for (a) right ankle (RA), (b) left ankle
(LA), (c) right knee (RK) and (d) left knee for a gait cycle.

A Case Study — Healthy vs. Amputee Comparison

A case study was conducted to examine gait asymmetry and
joint motion limitations by comparing a healthy participant with
a lower-limb amputee. To reduce the influence of confounding
factors such as weight, height, and age, both individuals were
selected to be comparable in these characteristics. IMU sensors
were used to collect gait data, focusing on knee and ankle joint
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angles during one representative gait cycle. The analysis
revealed notable asymmetries between the prosthetic and intact
limbs, particularly during the swing and pre-swing phases,
where the prosthetic limb exhibited reduced naturalness and
restricted motion compared to the healthy participant. These
findings highlight the potential of IMU-based analysis in
identifying gait deviations and functional limitations in amputee
populations.

These results showed that an amputee exhibited an asymmetric
gait compared to a healthy person. This study supports the
usefulness of IMU in helping to detect differences in movement
and measure angles, which will help in the future in designing a
better prosthetic limb that improves the quality of life of the
amputee.

Left Knee Joint Angle

—— Amputee

—— Healthy

Flexion/Extension angle (rad)

Gait Cycle (%)

(a)

Right Ankle Joint Angle

—— Amputee
30 — Healthy

Plantar Flexion/Dorsiflexion angle (rad)

aa © = P
Gait Cycle (%)

(b)

Left Ankle Joint Angle

— Amputee
Healthy

Plantar Flexion/Dorsiflexion angle (rad)

3 20 20 50 20 100

Gait Cycle (%)
(c)
Fig. 5 Comparison of lower limb joint angle between healthy
and an amputee throughout a gait cycle.
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CONCLUSION

Six IMU sensors were employed to acquire lower-limb joint
motion data from healthy participants. Four joint angles were
extracted, and the signals were filtered using a Butterworth low-
pass filter to reduce noise while preserving physiological
patterns. Data preprocessing and visualization were performed
in Python. For consistency, a single gait cycle was selected from
each participant and compared with Kinovea measurements.
The intraclass correlation coefficient (ICC) demonstrated
moderate to excellent agreement between the IMU and Kinovea
systems. In addition, a case study comparing a healthy subject
and a lower-limb amputee revealed gait asymmetry and reduced
prosthetic limb motion, particularly during the swing phase.

This study introduced a cost-effective method for estimating
lower-limb joint angles using IMUs and proposed a comparative
framework with Kinovea video-based motion analysis. The
approach can serve as an alternative in clinical and research
settings where advanced motion capture systems are
unavailable.

The results provide clinically relevant information for assessing
gait, supporting the development of rehabilitation strategies for
amputees. The system’s portability, low cost, and ease of use
make it suitable for both laboratory and non-laboratory
applications.

The study was limited by noise and signal drift in IMU
measurements, which can be influenced by environmental
conditions, sensor displacement, and gravitational effects.
Furthermore, the participant pool consisted of 30 healthy
subjects and one amputee, restricting the generalizability of the
findings.

Future work should expand the participant population to include
diverse clinical groups, such as stroke patients and amputees
with  different prosthetic designs. Combining IMU
measurements with 3D motion capture systems could improve
accuracy, while machine learning techniques applied to larger
datasets may enhance gait classification and analysis.
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